Inhibition of Intestinal Bile Acid Transporter Slc10a2 Improves Triglyceride Metabolism and Normalizes Elevated Plasma Glucose Levels in Mice

نویسندگان

  • Thomas Lundåsen
  • Eva-Marie Andersson
  • Michael Snaith
  • Helena Lindmark
  • Johanna Lundberg
  • Ann-Margret Östlund-Lindqvist
  • Bo Angelin
  • Mats Rudling
چکیده

Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c). Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF) 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice.

The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gen...

متن کامل

Analysis of the ileal bile acid transporter gene, SLC10A2, in subjects with familial hypertriglyceridemia.

Familial hypertriglyceridemia (FHTG), a disease characterized by elevated plasma very low density lipoprotein triglyceride levels, has been associated with impaired intestinal absorption of bile acids. The aim of this study was to test the hypothesis that defects in the active ileal absorption of bile acids are a primary cause of FHTG. Single-stranded conformation polymorphism analysis was used...

متن کامل

Enterobacteria modulate intestinal bile acid transport and homeostasis through apical sodium-dependent bile acid transporter (SLC10A2) expression.

In our study, ampicillin (AMP)-mediated decrease of enterobacteria caused increases in hepatic bile acid concentration through (at least in part) elevation of bile acid synthesis in C57BL/6N mice. We investigated the involvement of enterobacteria on intestinal bile acid absorption in AMP-treated mice in the present study. Fecal enterobacterial levels and fecal bile acid excretion rates were mar...

متن کامل

Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2).

Primary bile acid malabsorption (PBAM) is an idiopathic intestinal disorder associated with congenital diarrhea, steatorrhea, interruption of the enterohepatic circulation of bile acids, and reduced plasma cholesterol levels. The molecular basis of PBAM is unknown, and several conflicting mechanisms have been postulated. In this study, we cloned the human ileal Na+/bile acid cotransporter gene ...

متن کامل

Intestinal CREBH overexpression prevents high-cholesterol diet-induced hypercholesterolemia by reducing Npc1l1 expression

OBJECTIVE The transcription factor cyclic AMP-responsive element-binding protein H (CREBH, encoded by Creb3l3) is highly expressed in the liver and small intestine. Hepatic CREBH contributes to glucose and triglyceride metabolism by regulating fibroblast growth factor 21 (Fgf21) expression. However, the intestinal CREBH function remains unknown. METHODS To investigate the influence of intesti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012